New determinantal formulae for the Casimir operators of inhomogeneous pseudo-unitary Lie algebras and their Inönü-Wigner contractions
نویسنده
چکیده
For the inhomogeneous pseudo-unitary Lie algebras Iu(p, q) a determinantal method to compute the Casimir operators is given, independently of the traditional analysis of the enveloping algebra. This procedure is extended to contractions of Iu(p, q) isomorphic to an extension by a derivation of the inhomogeneous special pseudo-unitary Lie algebras Isu(p − 1, q), providing an alternative analytical method to obtain their invariants. PACS numbers: 02.20S
منابع مشابه
Determinantal formulae for the Casimir operators of inhomogeneous Lie algebras
Contractions of Lie algebras are combined with the classical matrix method of Gel’fand to obtain matrix formulae for the Casimir operators of inhomogeneous Lie algebras. The method is presented for the inhomogeneous pseudounitary Lie algebras Iu(p, q). This procedure is extended to contractions of Iu(p, q) isomorphic to an extension by a derivation of the inhomogeneous special pseudo-unitary Li...
متن کاملVirtual copies of semisimple Lie algebras in enveloping algebras of semidirect products and Casimir operators
Given a semidirect product g = s ⊎ r of semisimple Lie algebras s and solvable algebras r, we construct polynomial operators in the enveloping algebra U(g) of g that commute with r and transform like the generators of s, up to a functional factor that turns out to be a Casimir operator of r. Such operators are said to generate a virtual copy of s in U(g), and allow to compute the Casimir operat...
متن کاملInönü - Wigner Contraction of Kac-Moody Algebras
We discuss Inönü-Wigner contractions of affine Kac-Moody algebras. We show that the Sugawara construction for the contracted affine algebra exists only for a fixed value of the level k, which is determined in terms of the dimension of the uncontracted part of the starting Lie algebra, and the quadratic Casimir in the adjoint representation. Further, we discuss contractions of G/H coset spaces, ...
متن کاملInternal labelling operators and contractions of Lie algebras
We analyze under which conditions the missing label problem associated to a reduction chain s ⊂ s of (simple) Lie algebras can be completely solved by means of an Inönü-Wigner contraction g naturally related to the embedding. This provides a new interpretation of the missing label operators in terms of the Casimir operators of the contracted algebra, and shows that the available labeling operat...
متن کاملOn some nonlinear extensions of the angular momentum algebra
Deformations of the Lie algebras so(4), so(3,1), and e(3) that leave their so(3) subalgebra undeformed and preserve their coset structure are considered. It is shown that such deformed algebras are associative for any choice of the deformation parameters. Their Casimir operators are obtained and some of their unitary irreducible representations are constructed. For vanishing deformation, the la...
متن کامل